1078

Structural Characterization of bacterial and fungal phytochromes in dark and illuminated state

Manal Ebrahim^{1,*}, Luisa Herder^{1,*}, Michal Szczepek^{1,*}, Andrea Schmidt^{1,*}, Norbert Michael², Anja Koch¹, Bilal Qureshi³, David von Stetten⁴, Kai Leister⁵, Reinhard Fischer⁵, Norbert Krauss⁶, Tilmann Lamparter⁶, Peter Hildebrandt² and Patrick Scheerer^{1, §}

¹Charité - Universitätsmedizin Berlin, Institute of Medical Physics and Biophysics (CC2), AG Protein X-ray Crystallography & Signal Transduction, Charitéplatz 1, D-10117 Berlin, Germany ²Technische Universität Berlin, Institute of Chemistry, Max-Volmer-Laboratorium, Straße des 17. Juni 135, D-10623 Berlin, Germany ³Oxford University, STRUBI Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, Hamburg, D-22607, Germany SKarlsruhe Institute of Technology (KIT); Institute for Applied Biosciences Dept. of Microbiology Fritz-Haber-Weg 4 D-76131 Karlsruhe, Germany SKarlsruhe Institute for Technology, Allg. Botanik, Photobiologie, Kaiserstr. 2, D-76131, Karlsruhe, Germany

*Correspondence address: patrick.scheerer@charite.de

REFERENCES

not limited by molecular weight^[7]

→FL-constructs so far not crystallizable

sample must be crystallizable

high atomar resolution^[7]

static snapshot^[7]

- [1] A. Schmidt et al., Nat Commun, 2018, 9, 1-13. [6] https://www.esrf.eu/files/live/sites/www/files/ [2] A. Blumenstein et al., Curr. Biol, 2005, 15,
- 1833-1838. [3] P. Scheerer et al., ChemPhysChem, 2010, 11, [8] M. Topf et al., Structure, 2008, 16, 295-307.
- [4] K. D. Piatkevich et al., Nat Commun, 2013, 4,
- 2153-2163. [5] Created with BioRender.com

closer to native state^[8]

+ heterogenity possible[™]

relatively low resolution^[8]

limited to large complex^[8]

→applicable for FL-constructs

- 1090-1105.
- com%20photos/About%20Us/synchrotron3D.png [7] B. Rupp B et al., Wiley Online Libary, 2012.

BUT: Cryo-EM techniques are continually improving

- [9] L. A. Earl et al., Curr Opin Struct Biol, 2017.
- 46, 71-78. [10] X. Yang et al., PNAS, 2008: 38, 14715-14720.

GOALS

FphA: 142 kDa, 1280 aa

Fluorescence properties:

NTE

- Crystal structure of
- Agp2-V244F
- role of Phe244 towards
- Full-lenght protein structure using Cryo-EM:
- structure of full-lenght phytochromes in their ground states and excited states

Output Module

- investigation of coupling of PHY tongue and output
- comparison of fungal and bacterial full-lenght

FphA ∆**NTE**:125 kDa,1113 aa

- fluorescence
- phytochromes

module

How does the NTE influences the photoconversion?

Photosensory Core Module