
Proton dynamics in the light-driven bacterial Freie Universität Berlin chloride pump *Nm*HR (=NM-R3)

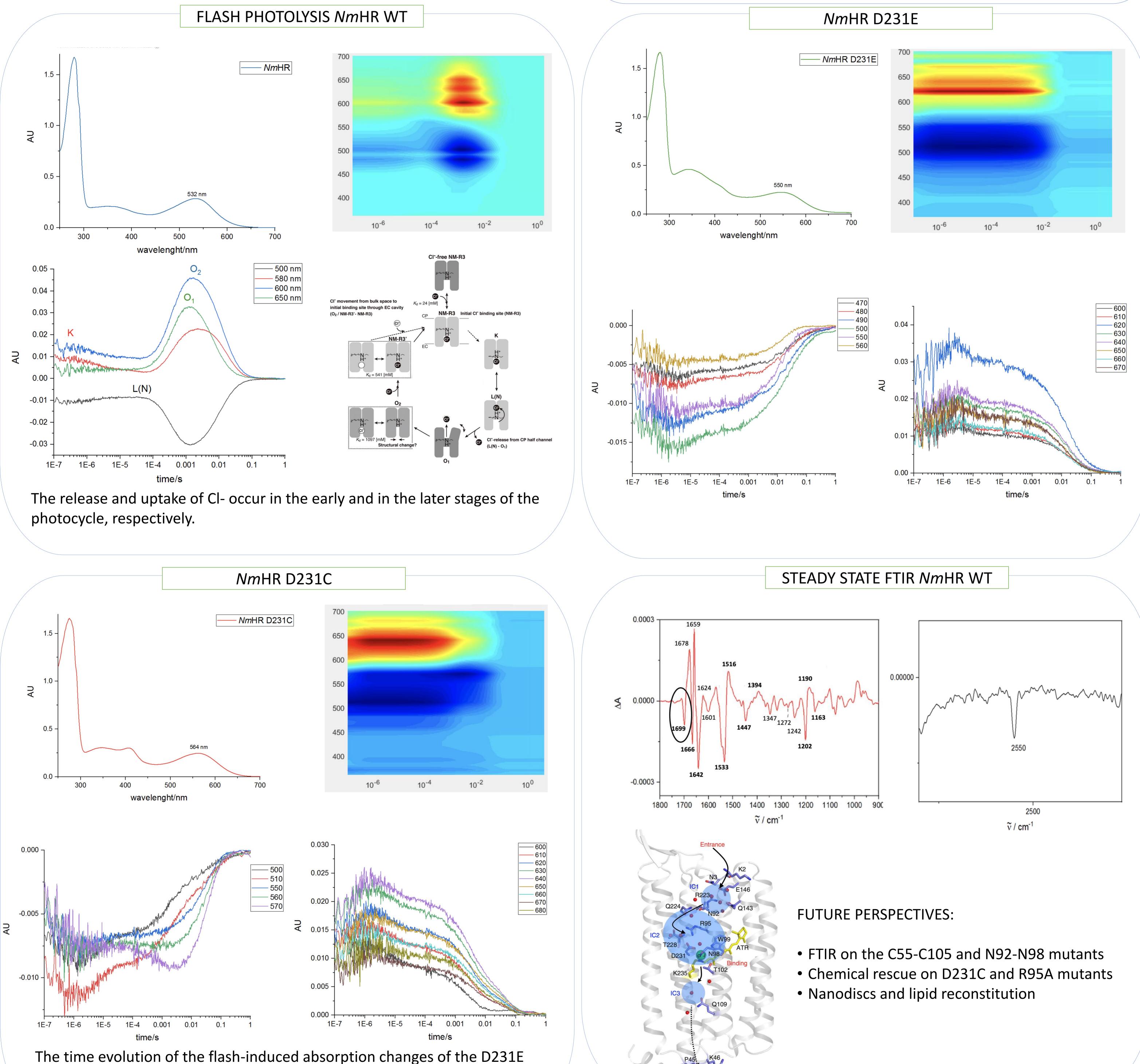
- Mariafrancesca La Greca¹, Sabine Oldemeyer², Luiz Schubert², Mohamad Dekmak², Nogly Przemyslaw³, Sandra Mous³, Joachim Heberle² and Ramona Schlesinger¹
- ¹Freie Universität Berlin, Experimental Physics: Genetic Biophysics; ²Freie Universität Berlin, Experimental Physics: Molecular Biophysics, ³ETH Zürich, Department of Structural Biology

INTRODUCTION

The light-activated NmHR rhodopsin pumps Cl- ions into the cell, representing the first chloride-pumping rhodopsin uncovered in a marine bacterium.

Two crystal structures revealed the presence of two chloride ions, Cl-1 lies close to the Schiff base and Cl-2 in an extracellular surface pocket that may be involved in a potential Cl-vectorial transport.

NM-R3


SCOPE OF THIS WORK AND EXPERIMENTAL DESIGN

_										
Ν	No. in NM-R3	95	98	102	109	197	213	223	231	235
	No. in NpHR	123	126	130	137	218	234	244	252	256
	No. in BR	82	85	89	96	178	194	204	212	216
	BR	R	D	Т	D	Т	Е	Е	D	К
	NpHR	R	Т	S	Α	Т	Е	Т	D	Κ
	NM-R3	R	Ν	т	Q	Μ	F	R	D	κ
_	KR2	\R/	Ν	D	Q	F	Т	R		K

Max absorption (nm)					
532 nm					
550 nm					
564 nm					
554 nm 🙁					
540 nm 🙁					

Study the function of the conserved charged aminoacids pair D231/R95 in the chloride transport pathway, using molecular biology and spectroscopic

tecniques such as mutagenesis, flash photolysis and FTIR.

and D231C mutants show that the photocycle is strongly impaired and trapped in the early stages (the chloride ion cannot be released).

References:

Kuglae K, et al., Nature Comm., 2016, 24, 7:12677. Tsukamoto T, et al., J. Phys. Chem., 2017, 121, 2027–2038. Hosaka T, et al., Journal of Mol. Biol., 2016, 291, 17488-17495

