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Introduction —
Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. They share similarities in their molecular mechanism, amongst which Cph2-family i ¢+ | ]— — “ — L‘ Mﬁ
are light absorption by the chromophore, transient protonation/deprotonation and protein structural changes, eventually leading to activation and signal transduction. Phytochromes act as photochemical . el | 5 .m ‘
switches, which interconvert between a red (Pr) and a far-red (Pfr) absorbing state [1]. We previously showed a different chromophore protonation behavior dependent on the Cphl assembly in vitro or in vivo 26130 131324 | 325515 516-748 A Cphi PGPBGOL_ i
[2], a study which 1s now extended to Agpl-PGP. We also show that modifications in the distant PHY domain of Cphl-PGP and GAF domain of Agp1-PGP affect the chromophore pK,. Further, we observed  Cphl ol P4 ii.l__J_ HK LA ,§ ; )
conformational changes of PHY and GAF domains as a result of the chromophore deprotonation for Cph1-PGP and Agp1-PGP, respectively. Modem biology investigation on phytochrome as a near-infrared Cys 20-BY 3 ’

(NIR) photoreceptor 1s important to design an optogenetic tools (OTs). Recently, near-infrared (NIR) fluorescent protems (FPs) engineered from bacterial phytochromes that bind to biliverdin IXa (BV) and §

19-118 | 119-320  324-504 511-745 Agpl PGP T00-
PCB binding 1RFP series and cyanobacterial phytochromes, have become invaluable probes for multicolor fluorescence microscopy and in vivo imaging. However, all current NIF FPs have short lifetime and Agpl = pas i‘ Cak __J—{LJE‘ o

low quantum yield. Here we applied a rational approach to combine mutations known to enhance fluorescence in Cphl, a cyanobacterial phytochrome, to derive a series of highly fluorescent mutants. The
mutants were analysed by biochemical, fluorescence steady-state and time-resolved spectroscopy and were shown to feature high extinction coefficient and fluorescence quantum yields, and long fluorescence

lifetime, contributing to overall high brightness of the fluorophores.

Methods

» Quick Exchange Mutagenesis Site-directed mutagenesis was carried out according to the Quik Change™ mutagenesis protocol (Agilent

Technologies) albeit individual enzymes were purchased separately from different manufactures (DNA polymerase: Finnzymes, Dpnl

endonuclease: New England Biolabs).

» Protein Labeling with IAF The dye bounds covalently to cystemne in protemn. For this purpose, dyes are selected m which the molecular

group allows the dye to bind to a group of the protein or an amino acid. Examples of linkers are the 1odoacetamide or maleimide groups.
These linkers bind specially to the SH group of cysteines. The labeling stereometry is calculatedusmng: bt .. S
Label s ( Label) ( Protein,Pr )

» Time-Correlation Single Photon Counting (TCSPC)
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Results 1: Conformation Dynamic in Agpl PGP

» Results 1-1 : Cys less mutant behaves similar to the WT
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» Fluorescence lifetime imaging microscopy (FLIM)
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» Photosensor module PAS-GAF-PHY (PGP) of ‘<§l gz?_/;, ( } ;(\.f\' 8 .' g 0.05|
Agpl has three native cysteines, 20, 279 and By N ﬁd\: 7}%\2 § sk 'EE N
295 (Fig 1.A). C20 in PAS domain is covalently % ,C}\ﬁ 2 o |2~
bond to the chromophore, therefore 1s not ‘ 2
available for dye labeling. 0.00 o T T TR
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» As the UV-vis (Fig 1.B and 1.C) and Raman Resonance (RR) (Fig 1.C and 1.D, L CARIPGPWT | | o ApiPGCZIOSCASS
Anastasia Kraskov B2 ) spectroscopy show, the photoconversion and the ” 1574I||' [ - |,'
chromophore binding pocket (CBP) mteraction with BV in cysteimne less (C279S o T T L ™ bl ll"u' "l.;rlu

C295S) mutant of Agpl PGP and WT are identical, at the standard conditions " Pir s

(50 mM Tris, 150 mM Nacl pH 7.8).
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» Results 1-2: Chromophore deprotonation in Agpl PGP mutant variants
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» Results 1-3: Conformation dynamic at the GAF domain
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» B (Bt )
> roc/rO: (1/2 COS[Qmax (1+ COS[Gmax])]:Z

» Labeling at the GAF domain: i the WT C279
and C295 are accessible for IAF labeling (Fig 3.A

Loop relative mobility

Steric restriction

3A) <\ Agp1-PGP Bk
» Labeling at the PHY doamin: the single < “’ '\ ' / ‘.,
cystemme mutant V364C (the same position as N "“\'\ ~ i&y&@ ' 5
C371 i Cphl) was prepared (Fig 3.B) to bond ....’Q Pl % r“\f\'
» Conformation dynamic in the GAF domain: W N
the pH titration fluorescence anisotropy m Agpl
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» Conformation dynamic in the PHY domain:
the pH titration fluorescence anisotropy in
V364C doesn't show any significant changes
regard to chromophore deprotonation (see Fig
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Results 2: Improved fluorescent phytochromes for in situ imaging
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» The popular method to reach the high fluorescence quantum yield 1s the mutagenesis = y ) )1, R222
of critical amino acids in chromophore binding pocket to screen for a highly R23 41-&'\-.2’-% :
fluorescent mutant. ) A "L; =
» Highly fluorescent mutants of Cphl achieved by combining the single mutations known to 4 III\HZ(/ ) . : 1290
enhance fluorescence in various phytochromes. The effect of Y176H and Y263F/S on @y \ sk : ;'*
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Results 3: Comparison of two fluorescent phytochrome

» Y176 in Cphl and Y165 mn Agp2 1s highly conserved tyrosine in the chromophore binding pocket of the most phytochrome

families.

» It was shown the mutant Y176H increase strongly the fluorescence quantum yield and quantum emission (Fischer 2004-2005).
However, this mutant in Agrobacterium phytochrome doesn’thave the same effect as 1t has in cyanobacterial Phytochrome.

» Here we compare this mutant tyrosine in Agp2 and Cphl which are Y165F and Y176H, respectively.
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» Table 1 The lifetime of the fluorescent phytochrome variants Agp2 PGP WT 028 1.0
are summarized. We can see here the lifetime Agp2 PAIR2 Agp2 PGP Y165F 0.44 1.03
with 13 mutants is even half of the Cphl WT. Agp2 PGP PAIR2 0.44 0.99
g . ;
Cphl PGP WT 0.86 1.03
Cphl PGPY176H 1.90 1.01

» Transient chromophore deprotonation affects on fluorescence intensityin Cph1 Y176H
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» Cphl Y176H lifetime 1.80 =+ 0.14 ns remain stable for all pH points, while the intensity 1s strongly pH dependent . The pK,
8.9 £ 0.1 1s around the chromophore pK, 9.
» The same residue mutantin Agp2 has a different effect, neither the lifetime and nor the intensity are pH dependent.

pH T
Conclusions and Discussion
» The mutant C279S in Agpl PGP reduces the chromophore pK, from 11 to lower than 10. Although the UV-vis and RR show the identical spectra of the C279S and wt, the UV/vis titration of Construct Chromophore pK, of conformational
C279S shows different chromophore deprotonation. The C279 1s the closest cysteine to the CBP, one amino acids before H280. Recent work showed the H250A reduced the chromophore pK, to PKppc change
around 8.8 (von Stetten 2007). It seems the mutant of cysteine to serin has such this effect on chromophore de-protonation equilibrium. Cphl PGP wt 9.04+ 0.02 -
» Conformation changes at the PHY domain due to chromophore deprotonation behave different in Cyanobacterial Cphl and Agrobacterial Agpl phytochrome: The results from the pH Cphl PGP-C3718S 8.37+0.03 i
titration anisotropy in Agpl PGP shows the flexibility of GAF domain (Fig 3.C) due to the chromophore deprotonation as we proved earlier for Cphl PGP [3]. while the PHY domain (Fig 3.E) Cphl.EG L 5. 105000 )
. : . _ . . _ : s : e _ T ~ ; Cphl PGP-AF (labeling in PHY/PAS) 8.28 +£0.02 8.5+:02
doesn’t seem to be flexible as Cphl. These results from two members of phytochrome family which 1s one (Agp1) 1s more primitive than the other (Cphl), mdicates the more advance mechanism of Cph1 PGP- C371S-AF (labeling in GAF) 2 10+ 008 8 0L 02
Cphl compare to Agpl, in _Which the PHY domain 1s getting more flexible as a reaction to the chromophore deprotonation, and this might facilitate the protemn signaling and protein respond after 65111 PG- AFm(labeling in PAS-%}AP) <75 75502
chromophore photoconversion. Agpl PGP wt =11 i
» High fluorescence quantum yield and lifetime in Cyanobacterial phytochrome, which make it to be used as an optogenetic tools and in vive imaging. Agpl PGP V364C 9.38+0.03 -
Agpl PGP wt —AF (labeling in GAF) 9.06 £ 0.07 9.0+0.2

» Mutant of the conserved tyrosine in Agp2 and Cphl shows different results in their fluorescence quantum yield and lifetime: The flourescence lifetime of Agp2 PGP Y165F (0.42 + 0.02 ns)
which 1s the highest flourecnce lifetime among the Agp2 mutant variants 1s even half of the Cph1 PGP wt (0.86 £ 0.05 ns). The mutant Y176H in Cphl PGP significantly increase the lifetime to 1.90

Agpl PGP V364C-AF (labeling in PHY) 9.40+0.20 -

+ 0.05 ns which 1s almost five times longer than the mutant Y165F m Agp2 PGP. This significant difference in fluorescence lifetime is might related to the mechanisms of photoconversion between BV-utilising  » Table 2 The chromophore deprotonation pK, ( pKpps) and the pK, from

bacteriophytochromes and phytobilin-binding phytochromes.

» The chromophore deprotonation affects on fluorescence quantum yield in Cph1 Y176H and not in Agp2 Y165F.
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