A4

O₂ evolution kinetics in red-shifted Photosystem II

<u>Ricardo Assunção*, Dennis Nürnberg, and Holger Dau</u> *ricardo.assuncao@fu-berlin.de, Freie Universität Berlin, FB Physik

Summary

The chlorophylls in the reaction center of Photosystem II define the energy level of the initial excited state from where the subsequent photochemistry can happen. Generally, it contains chlorophyll a exclusively and is denoted as P680*. However, for *Chroococcidiopsis thermalis*, a cyanobacteria that can replace about 10% of Chl a with Chl f under red-light conditions, it was shown that Chl f is also incorporated in the reaction center lowering its initial excited state (P727*) by 110 meV [1]. Here we investigated kinetics of oxygen evolution in thylakoid membranes from *C. thermalis* grown in white and red-light conditions and compared their response to different light excitations to those of Acaryochloris marina (containing Chl a and d) and Synechocystis sp. PCC 6803 (containing only Chl a).

SFB

1078

Method - Time-resolved O₂ polarography—

After each excitation flash, the produced O_2 is reduced by the electrode and the current is measured over time. The results are fit with a layered diffusion model [3]:

-Response to different light excitations

Oxygen release kinetics of different chlorophyll containing cyanobacteria were measured, each under three excitation light conditions: red LED (613 nm), far red LED (730 nm) and a flashlamp (below 570 nm).

- The application of different excitation light did not change the oxygen release kinetics of any of the tested samples.
- Cyanobacteria without red-shifted chlorophylls (top panels) had a significantly lower signal when excited by 730 nm light.

The kinetic curves for the sample grown is red-light conditions (Chl f-containing) shows significantly slower kinetics.

Flash patterns

The samples without red-shifted chlorophylls struggled to use the far-red LED light (730 nm), which translated in the loss of the normal 4 period oscillation, with an apparent miss factor above 80%.

The obtained activation energy value for RL-grown C. thermalis was about 110 meV higher than the value obtained for WL-grown *C. thermalis*.

This energetic difference and its related slower oxygen release, alongside the absence of a significant increase in miss factor, in the Chl f containing PSII, will be key points to consider in understanding this red-shifted water oxidation.

The slower oxygen release of RL-grown *C. thermalis* has did not translate in a significant increase in miss factor (below 20%).

- References

[1] Nürnberg, D. J., Morton, J., Santabarbara, S., Telfer, A., Joliot, P., Antonaru, L. A., ... & Rutherford, A. W. (2018). Photochemistry beyond the red limit in chlorophyll fcontaining photosystems. *Science*, *360*(6394), 1210-1213. [2] Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. *Trends in plant science*, 16(8), 427-431. [3] Dilbeck, P. L., Hwang, H. J., Zaharieva, I., Gerencser, L., Dau, H., & Burnap, R. L. (2012). The D1-D61N mutation in Synechocystis sp. PCC 6803 allows the observation of pH-sensitive intermediates in the formation and release of O2 from photosystem II. Biochemistry, 51(6), 1079-1091.

We thank the DFG for the financial support provided to the SFB 1078 on 'Protonation Dynamics in Protein Function', project A4.