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Rapid Reaction Monitoring of Proteins with Dual-Comb Spectroscopy
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-Scope of this work

Time-resolved infrared spectroscopy is a powerful tool to acquire information useful for elucidating structural changes and protonation dynamics in
proteins. While step-scan FT-IR or scanning techniques require several excitations to acquire spectro-temporal information, dual comb spectroscopy (DCS)
provides access to time-resolved IR spectra even with single shot experiments [1][2]. Therefore DCS based on quantum cascade lasers (QCL) provides an
opportunity to investigate even irreversible reactions. Here we present the first DCS data in the Amide | region of the well studied proton pump
bacteriorhodopsin (bR) and provide a comparison to our homebuilt tunable QCL based setup[3].

—-External Cavity QCL

Time-Resolved IR Spectroscopy Based on Tunable
External Cavity Quantum Cascade Lasers (EC-QCL)
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Fig.2: Experimental setup for monitoring transient
infrared absorbance changes after laser excitation
using cw EC-QCL emission as measuring light, as
shown in [3]. The signal measured by the MCT
(HgCdTe) detector is recorded with two oscilloscopes
operating at different sampling rates to get
information on a wide time range with a single
acquisition. The reference intensity is determined
from the measured pre-trigger values.

Fig.1: Principle of time-resolved infrared
spectroscopy using EC-QCLs. After tuning the QCL to
a specific wavenumber the beam attenuation is
regulated to maximize the signal-to-noise ratio.
Multiple acquisitions can be averaged before tuning
the QCL to the next wavenumber and repeating the
process. Measurements for different wavenumbers
are independent from each other. Central image
adapted from [3].

Key Facts:

= Tunable Emission (150-200 cm™ nominal tuning range for each laser cavity)
* Wavelength Accuracy €1 cm?
* Time Resolution 20 ns (50 MHz bandwidth)

Introducing IRis-F1
Dual-Comb Spectroscopy Based on Quantum
Cascade Laser (QCL) Frequency Combs

power

— T

radio frequency optical frequency

- L —L »
fres,1 fres,2 frequency

Fig.3: Principle of dual-comb spectroscopy, adapted from [1].
Two frequency combs with slightly different repetition rates
(f,) create a multiheterodyne beat in the radio frequency
(rf) range. Thereby an absorption feature in the optical
frequency range is mapped onto the rf range.

Key Facts:
* ‘broadband’ emission
(ca. 50 cm™ bandwith / laser module)

= spectral resolutionupto3 x10%cm™?
(laser linewidth)

= spectral sampling ca. 0.3 cm™

= time resolution ca. 1 us
(sub-microsecond possible)

= single-shot experiments possible!?

Fig.4: Photograph of IRis-F1 and
experimental setup of the dual comb
spectrometer. Two QCL frequency
combs are combined at a
beamsplitter after attentuation by
neutral density filters (ND filter).
One combined beam is passed
through the sample chamber, the
other one is used as reference. Both
beams are detected by two separate
MCT (HgCdTe) detectors. The
sample is excited by a Nd:YAG laser.
Adapted from [1].
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"Bacteriorhodopsin: EC-QCL vs DCS
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Fig.5: Comparison of time-resolved IR absorption data of bacteriorhdopsin acquired by a tunable QCL-
setup (right) and DCS (left). Top: Contour plot covering the frequency range from 1620 — 1680 cm™* .

Middle: Kinetic traces of the most prominent bands: 1639 cm™ (-) Schiff-base vibration, 1650 cm™ (+) and
1660 cm™ (-) and 1670 cm™ (-) amide | vibrations as already reported in [4,5]. Bottom: Spectra 299 us
(orange) and 8.5 ms (green) after light-excitation at 4.5 cm™ spectral resolution, representative for the
M- and N/O-intermediate. Both data sets were acquired by averaging over 3000 laser excitations.

-Approaching single-shot experiments
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Fig.6: comparison of single-shot experiments using the DCS and EC-QCL setup. DCS (A-D) single shot spectra at
299 us (A), 8.5 ms (B), 1670 cm! kinetic (C). In all plots except for (D) the black trace is the average of 10 single-
shots with their standard deviation as grey shading. (D) shows the same single shot spectra as in (A) but with a
LDA fitted spectra as black trace. (E) and (F) show the 1639 cm™ and 1670 cm™ kinetic respectively acquired by
the EC-QCL setup.

"Observing protonation dynamics
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Fig.7: Protonation dynamics of bR. Left: M-state (orange, 300 us) and left N/O state (green, 3.5 ms) spectra
acquired by averaging 10 single-shots (black). Right: Kinetic trace of the band at 1762 cm™. This band is assigned to
the C=0 stretching vibration of the primary proton acceptor D85 [6].
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