Springe direkt zu Inhalt

Project A6

Proton turnover rates of cytochrome bo3 ubiquinol oxidases measured at the single-enzyme level

Principal Investigators: Dr. Stephan Block (FU)

A microscopy-based single-liposome assay is used to quantify proton turnover rates of cytochrome bo3 ubiquinol oxidases on the single-enzyme level. Proton turnover will be studied in dependence of various parameters, such as the curvature and lipid composition of the environment used for enzyme reconstitution. Microfluidics will be used to control the rate of electron delivery towards the enzyme, aiming to operate the enzyme at low turnover rates and therefore probing the tightness of the coupling between electron transfer and proton translocation at in vivo-relevant low electron delivery rates.



Berg, J., Block, S., Höök, F., and Brzezinski, P. (2017). Single proteoliposomes with E. coli quinol oxidase: proton pumping without transmembrane leaks. Isr. J. Chem. 57, 437-445; doi: 10.1002/ijch.201600138

Friedrich, R., Block, S., Alizadehheidari, M., Heider, S., Fritzsche, J., Esbjörner, E., Westerlund, F., and Bally, M. (2017). A nano flow cytometer for single lipid vesicle analysis. Lab Chip 17, 830-841; doi: 10.1039/c6lc01302c

Müller, M., Lauster, D., Wildenauer, H.H.K., Herrmann, A., and Block, S. (2019). Mobility-based quantification of multivalent virus-receptor interactions: New insights into influenza A virus binding mode. Nano Lett. 19, 1875-1882; doi: 10.1021/acs.nanolett.8b04969

Parveen, N., Rydell, G. E., Larson, G., Hytönen, V. P., Zhdanov, V. P., Höök, F., and Block, S. (2019). Competition for membrane receptors: norovirus detachment via lectin attachment. J. Am. Chem. Soc. 141, 16303-16311; doi: 10.1021/jacs.9b06036


Block, S., Johansson Fast, B., Lundgren, A., Zhdanov, V.P., and Höök, F. (2016). Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity. Nat. Commun. 7, 12956; doi: 10.1038/ncomms12956

Block, S., Zhdanov, V.P., and Höök, F. (2016). Quantification of multivalent interactions by tracking single biological nanoparticle mobility on a lipid membrane. Nano Lett. 16, 4382-4390; doi: 10.1021/acs.nanolett.6b01511